Robust weighted LAD regression

نویسندگان

  • Avi Giloni
  • Jeffrey S. Simonoff
  • Bhaskar Sengupta
چکیده

The least squares linear regression estimator is well-known to be highly sensitive to unusual observations in the data, and as a result many more robust estimators have been proposed as alternatives. One of the earliest proposals was least-sum of absolute deviations (LAD) regression, where the regression coefficients are estimated through minimization of the sum of the absolute values of the residuals. LAD regression has been largely ignored as a robust alternative to least squares, since it can be strongly affected by a single observation (that is, it has a breakdown point of 1/n, where n is the sample size). In this paper we show that judicious choice of weights can result in a weighted LAD estimator with much higher breakdown point. We discuss the properties of the weighted LAD estimator, and show via simulation that its performance is competitive with that of high breakdown regression estimators, particularly in the presence of outliers located at leverage points. We also apply the estimator to several real data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Maximum Likelihood Approach to Least Absolute Deviation Regression

Least absolute deviation (LAD) regression is an important tool used in numerous applications throughout science and engineering, mainly due to the intrinsic robust characteristics of LAD. In this paper, we show that the optimization needed to solve the LAD regression problem can be viewed as a sequence of maximum likelihood estimates (MLE) of location. The derived algorithm reduces to an iterat...

متن کامل

Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso

The least absolute deviation (LAD) regression is a useful method for robust regression, and the least absolute shrinkage and selection operator (lasso) is a popular choice for shrinkage estimation and variable selection. In this article we combine these two classical ideas together to produce LAD-lasso. Compared with the LAD regression, LAD-lasso can do parameter estimation and variable selecti...

متن کامل

Weighted Least Absolute Deviation Lasso Estimator

The linear absolute shrinkage and selection operator(Lasso) method improves the low prediction accuracy and poor interpretation of the ordinary least squares(OLS) estimate through the use of L1 regularization on the regression coefficients. However, the Lasso is not robust to outliers, because the Lasso method minimizes the sum of squared residual errors. Even though the least absolute deviatio...

متن کامل

Fuzzy Robust Regression Analysis with Fuzzy Response Variable and Fuzzy Parameters Based on the Ranking of Fuzzy Sets

‎Robust regression is an appropriate alternative for ordinal regression when outliers exist in a given data set‎. ‎If we have fuzzy observations‎, ‎using ordinal regression methods can't model them; In this case‎, ‎using fuzzy regression is a good method‎. ‎When observations are fuzzy and there are outliers in the data sets‎, ‎using robust fuzzy regression methods are appropriate alternatives‎....

متن کامل

Asymptotic Analysis of High-dimensional Lad Regression with Lasso

The Lasso is an attractive approach to variable selection in sparse, highdimensional regression models. Much work has been done to study the selection and estimation properties of the Lasso in the context of least squares regression. However, the least squares based method is sensitive to outliers. An alternative to the least squares method is the least absolute deviations (LAD) method which is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2006